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Executive Summary

This physics manual is intended to document all of the methods used in version 8 of the Jayenne
Implicit Monte Carlo solver library. The goal of this manual is to provide a general overview of the
basic methods used, and provide a list of references that detail methods that have been implemented
in to the Jayenne library.
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1 Introduction

The Monte Carlo (MC) method was invented at Los Alamos in the immediate post-World- WarII
era by Ulam and von Neumann to numerically simulate the complex transport of radiation through
�ssile material. It was the numerical basis for the �rst large scale scienti�c computation performed
on the world's �rst electronic computer. It was also the only method at the time capable of the task.
In the 1950's, Metropolis et al. invented the most widely used Monte Carlo method, the Metropolis
algorithm, to study equations of states motivated by weapons research. The new algorithm was the
only method at the time capable of the task. In between, Fermi, as a Laboratory consultant, o�ered
that the Ulam-von- Neumann Monte Carlo strategy could solve Schrödinger's equation. It took until
the dawn of the supercomputing age to realize Fermi's vision. Ulam and Metropolis o�ered that the
method was particularly well suited for parallel computation, decades before a parallel computer
existed. Unlike many numerical methods, the Monte Carlo technique is naturally parallel. These
beginnings set the foundation not only for the legacy, still bene�ting important portions of today's
research at the Laboratory, but also for today's world-wide use of the Monte Carlo method for
classical and quantum problems.

The enduring power of the Monte Carlo method lies in its unique ability to �break the curse of
dimensionality.� Many deterministic methods scale exponentially with the complexity of the prob-
lem, while (most) Monte Carlo methods scale independently of dimensionality. As the complexity
of the mathematical, scienti�c, and engineering problems at the Laboratory keep increasing, Monte
Carlo methods will remain the only viable simulation method for many tasks. As the ever-increasing
size of supercomputers enables larger and more complex problems, Monte Carlo will remain in the
Laboratory's code plan because it can do what other methods will be unable to do. Enabling
Monte Carlo methods for exascale systems will likely unveil a new dimension to this fundamentally
powerful numerical method.

The use and development of Monte Carlo methods are ubiquitous at Los Alamos. In addition to
the e�orts described in detail in this document, Monte Carlo is also being used and developed for
modeling complex networks, social systems, classical kinetic theory, performance analysis, optimal
estimation and more.

The Jayenne project [44] was original started in 1997 with the express goal of providing a
Monte Carlo thermal radiation transport capability in the x-ray regime for high energy density
physics applications such as supernova explosions, inertial con�nement fusion, and radiation �ow
experiments at facilities such as Sandia's Z-Pinch, Omega Facility, and the National Ignition Fa-
cility. The Jayenne Project uses the Fleck and Cummings Implicit Monte Carlo (IMC) method.
The Jayenne Project's software is powerful, robust, and massively parallel; it is multi-dimensional,
runs on Adaptive Mesh Re�nement (AMR) and unstructured meshes, and supports both domain-
decomposed and particle-decomposed parallel topologies. These underlying components are used in
the radiation-only code McGrid, which is also used as a testbed for advanced numerical methods
research. The underlying components are also used in IMC_API, which is a high-level IMC com-
ponent that hooks into multi-physics application codes and provides the transport capability for
radiation-hydrodynamics simulations. The Jayenne Project libraries have run for countless millions
of CPU-hours on the Department of Energy's supercomputers.

From its inception, the project has employed modern software development practices with em-
phasis on iterative, incremental tasking, con�guration management, version control , design and
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Introduction

programming code reviews by peers, test driven development, design-by-contract testing and ex-
tensive unit and integrated testing and multi-platform development. The bulk of the software is
written in C++ but also provides a Fortran API.
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2 The Thermal Radiation Transport equations

The Jayenne library solves the standard thermal radiation transport (TRT) equations. We begin
be de�ning the standard two-temperature radiation equation,

1

c

dI(r⃗, Ω̂, ν, t)

dt
+ Ω̂ · ∇I + σI = σB(ν, T ), (1)

where the photon intensity I(Ω̂, r⃗, t, ν) [GJ/cm2/ns/sr/keV] is a function of solid angle direction
Ω̂ [sr], position r⃗ [cm], frequency ν [keV], and time t [ns]. The remaining variables are the opacity
σ(ν, r⃗, t) [1/cm] and the Planck spectrum

B(ν, T ) =
2hT 3

c3
(ν/T )3

eν/T − 1
, (2)

[Gj/cm2/ns/sr/keV] with the constants are de�ned as c [cm/s] the speed of light, and h is the Planck
constant [keV-ns]. The radiation equation above is coupled to the material energy balance equation

de

dt
=

∫∫
σIdΩ̂dν −

∫∫
σB(ν, T )dΩ̂dν. (3)

where e is the material energy that is coupled to the material temperature via an equation of state

de

dt
= Cv(r⃗, T )

dT

dt
, (4)

These equations are non-linearly coupled via the material temperature T . The tight non-linear
coupling in high energy density physics regimes, with pressures greater than 1MBar and/or tem-
perature on the order of 1 × 106 [45], make them unattractive to solve in there current form. In
the next section we will outline the linearized form of the TRT equations that are solved via the
Jayenne library.

2.1 The linearized TRT equations

The Jayenne libraries solve the linearized TRT equations original de�ned by Fleck and Cummings
in 1971[23]. Wollaber provides an extensive derivation and analysis of this linearization procedure
in his �Four Decades of Implicit Monte Carlo� review article [45]. For the purpose of this document
we will only brie�y cover this linearization to help motivate some of the improvements to the IMC
method that will be discussed in later chapters. We begin the linearization by rewriting the original
TRT equations in a more convent form

1

c

dI

dt
+ Ω̂ · ∇I + σnI =

1

4π
σnacT

4
n+1b(ν, Tn), (5)

Cv,n
dT

dt
=

∫∫
σnIdΩ̂dν − σpacT

4
n+1. (6)

where we have substituted the material energy with a constant speci�c heat Cv,n(r⃗, Tn)
dT
dt based

on the initial material temperature Tn. Similarly we have chosen to lag the normalized material
spectrum

b(ν, Tn) =
15

π4T

(ν/T )3

eν/T − 1
, (7)
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The Thermal Radiation Transport equations

and the Planck opacity σp(Tn) =
∫
σnb(ν, Tn)dν. Note that by directly specifying the time centering

of these terms we have made an O(∆t) approximation to the original system of equations. This form
of the TRT equation illustrates the non-linear dependence of the material energy balance equation
on temperature. We can now linearize the system by expanding the implicit temperature Tn+1 using
a Taylor series expansion

T 4
n+1 = T 4

n + 4∆tT 3
n

dT

dt
+O((∆t)2). (8)

Substituting this expansion into the TRT equation results in the classic Implicit Monte Carlo
equations

1

c

dI

dt
+ Ω̂ · ∇I + σnI =

1

4π
fσnacT

4
nb(ν, Tn) +

σb(ν, Tn)

σp4π

∫∫
(1− f)σnIdΩ̂dν (9)

Cv,n
dT

dt
=

∫∫
fσnIdΩ̂dν − fσpacT

4
n+1. (10)

where the �eck factor

f =
1

1 + 4
σpacT 3

n∆t
cvn

(11)

is used to approximate the absorption emission process over a single time step as an isotropic
scattering event.

2.2 Limit Analysis

This section is not currently available.

2.3 Benefits and Deficiencies

To understand the bene�ts of the linearization we can examine the numerical absorption-emission
time scales, this is the time it take for a particle to be re-emitted after being absorbed. The addition
of the e�ective scattering term increases the numerical absorption emission time scale

tae =
Cv

4acT 3
+

T 3
n

T 3
n+1

∆t, (12)

as compared to the absorption emission time scale of the standard TRT equations

tae =
Cv

4acT 3
. (13)

This enables the MC solver to take large time steps when using the linearized system of equations.
However, it should be noted that this is not a truly implicit system and that unphysical overheating
can occur if a time step is taken such that it can not resolve this numerical time scale. Please see the
chapter on �Iterative Multifrequency Corrected Implicit Monte Carlo� for more details on recent
improvements to this methodology.

The linearized system also modi�es the absorption time scale of the problem

ta =
1

cσf
, (14)
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The Thermal Radiation Transport equations

while the collisional time scale remains unchanged

tc =
1

cσ
, (15)

As the �eck factor approaches zero, or the system because dominated by e�ective scattering, the
absorption time scales can become excessively large. This can make the Monte Carlo histories
extremely expensive to evaluate thus, the Jayenne library has two advanced moment based acceler-
ation schemes to improve computational performance, which are outlined in the �IMC Acceleration�
chapter.

Thus far in these de�nitions we have not discussed spatial discretization schemes. The material
opacities are discretized as piece wise constant over a problem speci�c mesh. Using piece wise
constant properties simpli�es particle tracking. Densmore and others have shown that using a piece
wise spatial discretization of the emission source term leads to nonphysically fast wave propagation
speeds in optically thick di�usive materials [16]. Therefor, the Jayenne library has developed two
di�erent linear source shape options to mitigate this issue and details can be found in the �IMC
Sources� chapter.

Finally we have also included additional chapters to discuss how other physics are coupled into
the TRT equations. These chapters cover �Three Temperature Physics,� �Physical Scattering,� and
�Radiation Hydrodynamics.� Each of these chapters brie�y covers the complexities of coupling
multiphysics problems into the linearized TRT equations.
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3 IMC Source

3.1 Radiation Sources

3.2 Tilt

The original IMC formulation of [23] assumes cell-centered, or piecewise-constant, material data.
Assuming a piecewise-constant σacT 4 emissivity to sample new Monte Carlo particles implies uni-
form spatial position sampling in each cell. In 1D planar geometry, the source particle position
would be

x = xi−1/2(1− ξ) + xi+1/2ξ ,

where x is the sampled particle coordinate, xi±1/2 are the edges of a cell indexed i, and ξ ∈ (0, 1)
is a uniformly sampled random number. In contrast, since the Monte Carlo transport step in
IMC is continuous, the distribution of spatial absorption positions are not necessarily uniform in
each cell. For instance, assuming the emission inside a cell is negligible and there is an incident
monodirectional �ux at xi−1/2, the average energy deposition position would be

x̄ = xi−1/2 +
1∫ ∆xi

0 e−σisds

∫ ∆xi

0
se−σisds = xi−1/2 +

1

σi

(
1− τie

−τi

(1− e−τi)

)
,

where x̄ is the expected absorption coordinate, σi is cell i absorption opacity, and τi is cell i
absorption optical thickness. Since the expectation value of the position from source sampling is
x̄ = (xi−1/2 + xi+1/2)/2, the expected absorption and emission locations do not have to agree.

In the limit of in�nitesmal time step size, ∆t, the IMC equations converge towards an explicit
thermal radiative transfer solution, since the Fleck factor approaches 1. Consequently, e�ective
scattering diminishes and e�ective absorption converges towards true absorption. Assuming non-
zero absorption opacity, this implies that for su�ciently small ∆t more energy will be emitted via
source particle sampling. However, given the potential inconsistency in expected absorption and
emission locations (see previous paragraph), substantial spatial error is incurred for cells of high
optical depth (τ): this is the so-called �teleportation error� described by [39].

A clear illustration of the issue, and why it is sometimes called �teleportation error�, is the
following: consider a time step that is smaller than the light-crossing time of a cell,

∆t =
1

3

∆xi
c

,

where ∆xi = xi+1/2 − xi−1/2. If σi = 1/ϵ∆xi, where ϵ≪ 1, the expectation value of an absorption
position of a particle incident at xi−1/2 is x̄a ≈ xi−1/2 + 1/σi. In the subsequent time step, energy
originating from the particle gets re-emitted at an expected position of x̄e = xi−1/2 +∆xi/2. The
implied energy propagation speed is

x̄e − x̄a
∆t

= 3c

(
1

2
− ϵ

)
> c .

Teleportation error was �rst addressed by [24]; the authors provide a spatial probability distri-
bution function (PDF) to sample source particles. This PDF is reconstructed from the cell-centered
quantities used to calculate emissivity, ∼ σT 4. In IMC, the method is commonly referred to as
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IMC Source

�source tilting�. For instance, assuming a piecewise-constant cell opacity, a reconstruction of emis-
sion that is linear in T 4 will give the following PDF:

p(x) =

(
2

T 4
i,L + T 4

i,R

)(
T 4
i,L

xi+1/2 − x

∆xi
+ T 4

i,R

x− xi−1/2

∆xi

)
,

where T 4
i,(L,R) are the left and right values of the linear pro�le. Note that σi is eliminated from the

PDF through normalization. Regardless of the details of the PDF, p(x), the sampling procedure
follows the canonical procedure outlined by [35],

ξ =

∫ x

xi−1/2

p(x′)dx′ ,

where again ξ is a uniformly sampled random variable between 0 and 1. This integral equation is
inverted to obtain x, the sampled location. For the linear T 4 sub-cell pro�les, the inversion for x is
analytic,

x = xi−1/2 +∆xi

−T 4
i,L +

√
T 8
i,L + (T 8

i,R − T 8
i,L)ξ

T 4
i,R − T 4

i,L

 .

Alternatively, the PDF can be sampled �rst as a discrete distribution of �Left� (L) and �Right� (R),

Pi,S =
T 4
i,S

T 4
i,L + T 4

i,R

,

where S ∈ {L,R}, then with

p(x|S) = 2φS(x) ,

where φ(L,R) are the linear coe�cients of T 4
i,(L,R) in the original equation for p(x). The sampled

value of x would be

x = xi−1/2 +∆xi ×

{√
ξ , S = L ,

1−
√
1− ξ , S = R .

The question remains as to how to calculate Ti,(L,R). In the standard IMC formulation[23], the
update to the temperatures are at cell centers; in order to get values for Ti,(L,R), a reconstruction
(i.e. interpolation) must be used. The sub-cell pro�le has the linear form,

T (x)4 = T 4
i +mi(x− xi) ,

which is cell-energy conservative, ∫ xi+1/2

xi−1/2

T (x)4 dx = T 4
i .

Thus T 4
i,L = T 4

i −mi∆xi/2 and T 4
i,R = T 4

i +mi∆xi/2. In the Jayenne package, the reconstruction
is performed as follows.
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IMC Source

1. Interpolate T 4 at edges of cell i,

T 4
i±1/2 =

∆xi±1T
4
i±1 +∆xiT

4
i

∆xi±1 +∆xi
.

2. Calculate the slope in cell i,

m̃i =
T 4
i+1/2 − T 4

i−1/2

∆xi
.

3. Limit the slope to prevent negative T 4,

mi = min(2T 4
i ,max(−2T 4

i , m̃i)) .

For 2D and 3D structured meshes, the reconstruction is performed along each dimension.
Sampling particles from a non-uniform pro�le at the sub-cell level indeed mitigates teleportation

error, as demonstrated with asymptotic analysis by [16]. However, [16] shows that the degree to
which source tilting mitigates teleportation error depends on the accuracy of the sub-cell pro�le.
Similarly, [42] show that �jump terms�, proportional to T 4

i,L − T 4
i−1,R, manifest to leading order.

Several options exist to obtain the correct asymptotic discrete di�usion limit with IMC:

� [42] force the temperature pro�le to be continuous between cells, which a�ects the calculation
of T 4

i,(L,R), and the calculation of the emission and Fleck factor [48],

� [29] store probable absorption locations from the previous time step and use these as sites of
emission in the next time step,

� [48] introduce a discontinuous galerkin �nite element basis to the material energy equation,
similar to what has been done for SIMC by [30] and [2].

In the subsequent section, we discuss the current implementation of a �nite element form of the
material energy equation, described by [48].

3.3 Linear-Discontinuous IMC

In the Jayenne package, the path chosen to obtain the correct discrete asymptotic di�usion limit
involves a �nite element formulation of the material energy equation. This is described by [48]
and subsequently referred to as �LD IMC�. The original form of LD IMC used non-uniform sub-cell
opacity, which provides more accuracy, but is more expensive as well. In the Jayenne package,
piecewise-constant opacities are used. In 1D planar geometry, the basis functions are

φL,i(x) =
xi+1/2 − x

∆xi
,

φR,i(x) =
x− xi−1/2

∆xi
.

It is assumed that the temperature can be represented by these functions,

T (x, t) = TL,i(t)φL,i(x) + TR,i(t)φR,i(x) ,
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IMC Source

where T(L,R),i are the vertex temperatures of cell i. The cell-centered temperature is the average of
the vertex values.

Ti =
TL,i + TR,i

2
.

Incorporating the temperature pro�le into the material energy equation, multiplying by the vector
of φ functions and integrating over the cell gives

Cv,n,i∆xi

(
1/3 1/6
1/6 1/3

)
∂

∂t

(
TL,i
TR,i

)
=∫ xi+1/2

xi−1/2

fn,iσn,i

(
φL,i

φR,i

)∫ 1

−1
I(x, µ, t)dµdx− fn,iσn,iT

3
n,iac∆xi

(
1/3 1/6
1/6 1/3

)(
TL,n,i
TR,n,i

)
,

where subscript n implies the beginning of the time step, I is radiation intensity, fn,i is the cell-
centered Fleck factor, σn,i is the cell-centered opacity, and Cv,n,i is the cell-centered heat capacity
at constant volume. The �rst term on the right side of the above equation implies that the Monte
Carlo tally of the energy deposition is weighted by the basis functions. The implementation can be
outlined as follows. For the LD and BLD IMC methods, a summary of the algorithm is as follows:

1. Calculate sub-cell spatially dependent forms for T (r⃗, t) and emission, σT (r⃗, t)4.

2. Sample source particle locations from the linear emission distribution.

3. For particle p, calculate the usual IMC distances.

4. Instead of tallying the standard Monte Carlo energy deposition, for particle weight Ep:

� for analog absorption, for each cell i, for each basis function l, tally φl,i(r⃗)Ep,

� For non-analog absorption, the value fn,iσn,iφl,i(r⃗)Epe
−τea(r⃗0,r⃗), where τea(r⃗0, r⃗

′) is the
e�ective absorption optical depth from r⃗0 to r⃗

′, must be integrated over the path length
from r⃗0 to the �nal location, r⃗.

5. Take the time integral of the �nite element-integrated IMC material-energy equation to update
the temperature.

The above enumeration is a specialization of the algorithm provided by [48].

The motivation for the LD IMC method follows from the asymptotic analysis provided by [48].
This analysis focuses on the worst manifestation of the jump terms [42] in the limit that ∆t is
asymptotically small. The typical scalings, given by [33] are applied,

σ → σ

ϵ
,

c→ c

ϵ
,

Cv → ϵCv ,
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IMC Source

where ϵ→ 0. Along with these scalings, expanding the dependent variables in ϵ,

I(x, µ, t) =

∞∑
k=0

I(k)(x, µ, t)ϵk ,

T(L,R),i(t) =

∞∑
k=0

T
(k)
(L,R),i(t)ϵ

k ,

will furnish an in�nite system of equations relating lower-order coe�cients of ϵ to higher-order.
Further assuming ∆t→ 0, integrating the transport equation in direction angle, multiplying by the
basis function vector, integrating over the cell, and summing to the material energy equation gives

Cv,i∆xi

(
1/3 1/6
1/6 1/3

)
∂

∂t

(
TL,i
TR,i

)
+

1

c

∂

∂t

∫ xi+1/2

xi−1/2

(
φL,i

φR,i

)
ϕ(x, t)dx =

(
Fi−1/2 − Fi

Fi − Fi+1/2

)
,

where Fi and Fi±1/2 are cell-average and cell-edge �ux. Consequently, with the scalings, to leading
order

0 =

(
F

(0)
j−1/2 − F

(0)
j

F
(0)
j − F

(0)
j+1/2

)
.

The cell-interior �uxes can be shown to be 0 [48], and the cell-edge �uxes are proportional to the
previously mentioned jump terms. Hence, the solution of the above equation is that the jump terms
are 0, implying leading-order continuity.
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4 IMC Acceleration

4.1 The zeroth angular moment of the TRT equations

The Jayenne library has two optional acceleration schemes that can be used; discrete di�usion
Monte Carlo (DDMC), or Random Walk (RW). Both of these schemes accelerate the solution by
decomposing it into transport (It) and di�usive (Ẽ) components. The di�usion domain is de�ned
by series of heuristic di�usion criteria (g(ν, r, t) outlined in a subsequent section), which is 1 for
di�usion groups and 0 otherwise. Using this criteria, we can rewrite the linearized TRT equations
as a function of di�usive energy density

Ẽ =
1

c

∫∫
g(ν, r, t)IdνdΩ, (19)

and the transport intensity
It = (1− g(ν, r, t))I. (20)

The linearized TRT equations are separated into a transport

1

c

dIt
dt

+Ω · ∇It + σnIt = St (21)

and zeroth angular moment di�usion acceleration equation

1

c

dẼ

dt
+

1

c
∇ · F̃j + (fσ̃n + (1− f)(1− γ)σ̃n)Ẽ = SD. (22)

The only assumption made at this point is that the di�usive energy density Ẽ is described by the
local Planck spectrum, which allows us to de�ne the frequency averaged opacity as

σ̃n =

∫
σ(ν, r, tn)g(ν, r, tn)b(ν, Tn)dν (23)

and the up-scattering ratio

γ =

∫
σ(ν, r, tn)g(ν, r, tn)b(ν, Tn)dν∫

σ(ν, r, tn)b(ν, Tn)dν
. (24)

allowing us to de�ne an average absorption opacity. These equations are solved simultaneously and
coupled directly to the material energy balance equation

cvn
dT

dt
= σ̃nẼ +

∫∫
fσnItdΩdν −

∫∫
fσpacT

4
n+1dΩdν. (25)

The coupling between the transport intensity and the di�usive energy density is de�ned via
boundary conditions that have been lumped into the di�usion and transport source terms (SD and
St). We have additionally left the closure relationship for the face (j) centered frequency integrated
di�usive �ux F̃j unde�ned. In the following sections we will describe how two di�erent acceleration
options are implemented by de�ning di�erent closers and boundary conditions for the di�usion
domain.
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IMC Acceleration

4.2 Discrete Diffusion Monte Carlo

The current default acceleration scheme is Discrete Di�usion Monte Carlo (DDMC) [25, 15, 20,
12, 7, 50, 49]. The fundamental concept of DDMC is to evaluate a discretized di�usion matrix via
Monte Carlo. We close the frequency integrated di�usion �ux by making the assumption that the
�ux is linearly anisotropic and therefore can be de�ned via Fick's Law

F̃j = −c 1

3σ̃r,j
∆Ẽ, (26)

where the di�usion Roseland opacity is de�ned as

σ̃r,j± =

∫
g(ν, rj,j±, t)

dB(ν,Tn)
dT dν∫

g(ν, rj,j±, t)
dB(ν,Tn,j)

dT
1

σ(ν,Tn,j)
dν

(27)

this is the unique opacity for every cell face, ± cell on either side of face j, evaluated at the average
face temperature

Tn,j = (0.5(T 4
n,j−1/2 + T 4

n,j+1/2))
0.25. (28)

For AMR faces the re�ned face uses an area weighted average temperature [18]. Given the face opac-
ities we apply the standard Szilard-Pomraning [43] spatial discretization to the unde�ned streaming
operator for all internal (di�usion-di�usion interface conditions between) cells and integrate over
volume (∆V )

1

c

dẼ

dt
∆V −

J∑
j

nj ·
1

3σ̃r,j
∇ẼAj + (fσ̃n + (1− f)(1− γ)σ̃n)Ẽ = SD, (29)

where the di�usion source

SD = γσpfaT
4
n∆V +

1

c
γ

∫ ∫ ∫
(1− f)σItdνdΩdV + St→D,j , (30)

includes emission and e�ective scattering into the di�usion domain along with internal boundary
source St→D,j for particles that move from the di�usion to the transport cells. The transport source

St = ξ(ν, T )γσpfacT
4
n+ξ(ν, T )(1−γ)

∫ ∫
(1−f)σItdνdΩ+ξ(ν, T )(1−γ)(1−f)σ̃nE+SD→t,j , (31)

includes emission and e�ective scattering into the transport domain along with internal boundary
source SD→t,j for particles that move from the di�usion domain to the transport cells. We have
de�ned an average face di�usion opacity

σ̃r,j =
σ̃r,j+σ̃r,j−∆x

0.5(σ̃r,j−∆x+ σ̃r,j+∆x)
, (32)

and a normalized transport spectrum

ξ(ν, T ) =

∫ ν
0 (1− g(ν, r, tn))σ(ν, r, tn)b(ν, Tn)dν∫∞
0 (1− g(ν, r, tn))σ(ν, r, tn)b(ν, Tn)dν

. (33)

In the next section will describe the spatial boundary conditions between di�usion and transport
cells.
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IMC Acceleration

4.2.1 DDMC transport-diffusion interface boundary conditions

The transport-di�usion interfaces used by Jayenne are described in detailed by Cleveland et al. [11].
This interface condition is based on Densmore's emissivity preserving boundary condition [17]. We
can de�ne the di�usion to transport boundary condition as

St→D,j = (1− P (µj))µjIt (34)

where µj = Ω · nj and the re�ection probability is de�ned as

P (µ) = (1− P ′)2(1 +
3

2
µj). (35)

Here P ′ is de�ned such that we can preserve the emissivity limit as de�ned by Densmore [17]

P ′
j =

ϵ′jβj

βj − 4
3ϵ

′
jτj

(36)

The remaining variables are de�ned as:

ϵ′j =
4

3

√
3(1− ωj)

1 + λ
√
3(1− ωj)

(37)

β =
3

2
(1− ωj)τ

2
j +

√
3(1− ωj)τ2j +

9

4
(1− ωj)2τ4j (38)

τj = σj∆x (39)

ωj =
σ̃r − σ̃nf

σ̃r
(40)

where the extrapolation distance has been modi�ed to ensure positivity

λ =
5

3
+

1

3
2(1− ωj)τj +

√
3(1− ωj) +

9
4(1− ωj)2τ2

− 1√
(3− ωj)

(41)

Finally we can de�ne the transport to di�usion source

St→D,j =
1

2π

µj∫ 0
−1 µdµ

cẼCm +
µj∫ 0

−1 µdµ

∫
P (µj)µjIjdµ (42)

as the amount of energy leaked from the di�usion domain and the transport particles re�ected o�
of the di�usion cell. The di�usion leakage coe�cient is de�ned as

Cm =
P ′
j

4
. (43)
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IMC Acceleration

4.3 Random Walk

The Jayenne project provides an additional di�usion acceleration scheme known as RandomWalk [22].
This acceleration scheme uses the analytic solution of an impulse point source in the largest possible
di�usive sphere that can be drawn in any given cell. Given that the random walk sphere is always
contained in a single cell, we can apply Fick's Law and re-write the di�usion equation for the RW
sphere as

1

c

dẼ

dt
− c

1

3σ̃r,j
∇2Ẽ + (fσ̃n + (1− f)(1− γ)σ̃n)Ẽ =

∫ ∫
I0

4πr2
δ(ν − ν ′)δrdΩdν, (44)

where I0 is the initial photon intensity at the beginning of the random walk process. Here we are
including the outscattering (1− γ) term which demonstrates signi�cant performance improvements
over the original RW implemenation [31]. Integrating this equation over the homogenized sphere for
radius R0 and with a vacuum boundary condition applied at the outer surface results in an analytic
solution

E(r, t) =
I0
c
exp(−c(1− f)(1− γ)σ̃nt) exp(−cfσnt)

1

R2
0

∞∑
n=1

(
n

r
) sin

(
nπ

R0
r

)
exp

(
−
(
nπ

R0

)2 ct

3σ̃r

)
. (45)

We begin by sampling the time to leak from a given random walk sphere using pre-tabulated tables
of the analytic solution

ξ =

∫ R0

0
E(r, tleak)r

2dr. (46)

where ξ is a random number between 0 and 1. Assuming continuous energy deposition, where the
absorbed energy is accounted for on a per track basis [35], we can sample the time to an upscattering
event as

tup =
− ln(ξ)

(1− f)(1− γ)σ̃nc
. (47)

Given the particles time to census we can now select the next termination event as the smallest
time to event. If the time to census or the time to upscattering is selected we need to determine
the radial position of the event on the sphere

ξ =

∫ Revent

0 E(r, tevent)r
2dr∫ R0

0 E(r, tevent)r2dr
. (48)

The result of these integrals are sampled from the pre-tabulated analytic solution. We can uniformly
sample the event location at the radial distance (Revent) from the middle of the random walk sphere.
The outgoing direction is sampled from an isotropic cosine angle based on the sphere outward normal
at the event location.

The Random Walk acceleration scheme is considerably less e�cient than DDMC for most prob-
lems. However, Random Walk is currently the only acceleration scheme enabled on GPU hardware.
It is also the only acceleration scheme currently available for unstructured mesh simulations.
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IMC Acceleration

4.4 Diffusion Criteria

In Jayenne both the RW and DDMC algorithm rely on a di�usion criteria to determine a priori

which groups should be lumped into the di�usion domain. Random Walk uses a simple cuto�
criteria

grw(ν, r, t) =

{
1, if ν ≤ νc

0, else

where the cuto� criteria is the highest frequency group that has a mean free path τ = 2. DDMC
has a slightly more complex di�usion criteria because it allows the lumped di�usion groups to be
non-contiguous

gddmc(ν, r, t) =



0, if cs < 0.9

1, else if τ ≥ 4.0 && ξ > 0.0

0, else if (1− fd) < 0.9

0, else if τr < 1.0

1, else if τ ≥ 2.0 && ξ > 1.0× 10−4

0, else .

This conditional statement is non-contiguous in space, angle, and time [11]. This conditional state-
ment introduces a few extra variables that need to be de�ned. The �rst is an alternative �eck factor
fd that is an approximate time-step independent �eck factor based on the ratio of the estimated
particle residence time in the cell and the absorption re-emission timescale.

fd =
1

1 + ∆tD
∆taϵ

, (49)

where

∆tD =
σR2

0

3c
(50)

is the residence time, approximated by the average time to di�use our of a sphere (with the radius
R0) approximately the size of the cell. The absorption re-emission time scale is de�ned by

∆taϵ =
cv

σ4aT 3c
. (51)

We can rewrite the Fleck factor in terms of mean free paths τ = σR0

fD =
1

1 + τ2aT 3

3cv

(52)
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5 Iterative Multifrequency Corrected Implicit Monte Carlo

The Jayenne library has a new advanced Iterative Multifrequency Implicit Monte Carlo (IMC2)
method that can be used to mitigate the unphysical overheating that occurs when using the standard
IMC linearization [10]. This method uses a local, non-linear, zero-dimensional Newton iteration to
accelerate an outer iteration of a standard IMC simulation.

5.1 The IMC2 derivation

This derivation begins by de�ning a linearization around the current iteration, which is constrained
by setting it equal to the most recent estimate of the fully-implicit emission temperature.

T 4
i+1∆t ≡

∫ ti+1

tn

(
T 4
n + 4T 3

c,i+1

dT

dt
∆t

)
dt. (53)

where Ti+1 is the implicit temperature for the current iteration i. Given this integration we obtain
the de�nition of Tc,i de�ned by Cleveland and Wollaber [8],

T 3
c,i+1 ≡

(
1

4

(T 4
i+1 − T 4

n)

(Ti+1 − Tn)

)
. (54)

The expansion (Eqs. 53 and 54) of the implicit emission term can be substituted back into the
original TRT equations, as was done by Fleck and Cummings [23], to yield a new �IMC like� set
of TRT equations. If we de�ne a correction ϵi+1 = fc,i+1 − fc,i, as was done by Cleveland and
Wollaber [8], we can operator split the implicit ϵi term to form a set of non-linear TRT equations
for a single iteration i,

1

c
(Ii − In) + Ω · ∇Ii + σ(ν, Tn)Ii = fc,i

σ(ν, Tn)b(ν, Ti)

4π
acT 4

n∆t

+
σ(ν, Tn)b(ν, Ti)

4πσp,i

∫ ∫
(1− fc,i)σ(ν, Tn)IidνdΩ, (55)

ρcv(Ti+1 − Tn) =
fc,i+1

fc,i
Sc,i, (56)

and

1

c
(In+1 − Ii) = −σ(ν, Tn)b(ν, Ti, )

4πσp,i

ϵi+1

fc,i
Sc,i, (57)

where Ti is the current iterate's guess for the implicit material temperature (or the Ti+1 from the
previous iteration),

Sc,i =

(∫ ∫
fc,iσ(ν, Tn)IidνdΩ− fc,iacσp,iT

4
n∆t

)
, (58)

fc,i+1 =
1

1 +
σp,i4acT 3

c,i+1∆t

ρcv

, (59)
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Iterative Multifrequency Corrected Implicit Monte Carlo

fc,i =
1

1 +
σp,i4acT 3

c,i∆t

ρcv

, (60)

and,

T 3
c,i ≡

(
1

4

(T 4
i − T 4

n)

(Ti − Tn)

)
. (61)

Note that this form is slightly di�erent than what was previously presented by Cleveland and
Wollaeger where the iteration scheme was not properly carried through the linearization [9]. As
our initial guess in the iteration scheme we use Ti+1 = Ti = Tn, where Tn is the initial material
temperature for the current time step. Then we evaluate Eq. 55 using Monte Carlo. Given the
energy deposition information for the current iteration (i) we perform a Newton solve on Eq 56,
making use of Eqs. 54, 59, 60 and 61, until we converge on a new Ti+1. Then we check if the
intensity correction (Eq. 57) will adhere to the maximum principle. We can de�ne an inequality
for correction source (ϵSc) that will guarantee that the maximum principle (In+1 ≤ B(ν, Tu)) is
satis�ed for the correction [34] (Tu denotes the maximum temperature in the problem including
any sources). We already know from the analysis performed by Cleveland and Wollaber that the
LCIMC equations guarantee that Ti+1 ≤ Tu [8] for any given iteration. The following inequality
ensures that the photon intensity will adhere to the maximum principle in each cell.(

1 +

(
1
c

∫ ∫
IidνdΩ+ ϵiSc,i − aT 4

u

)
aT 4

u

)−1

≥ 1 (62)

Note that it is possible to satisfy this inequality after a single iteration if the energy exchange is well
approximated by the original Fleck and Cummings expansion. If this inequality is not satis�ed for
all cells we update T 3

c,i and fi based on the new Ti+1, then set Ti = Ti+1, and continue to iterate.
After Eq. 62 is satis�ed in all cells we update the �nal photon intensity (In+1) using Eq. 57 and
set the �nal material temperature Tn+1 = Ti+1. Note that IMC2 can produce negative corrections
to the intensity for Eq. 57. Rather than reducing the current census energy we simply set the
correction ϵSc = 0. The negativity is an indication that the linearization in the current iteration
will not overheat or excessively cool the cell, therefore we can accept it without fear of violating the
maximum principle. This is equivalent to taking a semi-implicit IMC step, that will not violate the
maximum principle, without a correction.

5.2 Time step controller

Jayenne also provides a time step controller associated with the iterative solver[10]. Although
IMC2 will adhear to the maximum principle, upon iteration convergence, a time step controller
can still be valuable to both ensure accuracy and computational e�ciency. If the coupling in a
problem is su�ciently sti� it could take many transporter iterations per time step to converge.
Additionally, because we are currently lagging the opacity, wave stagnation can occur for large time
steps. Therefore we wish to de�ne a time step control that attempts to maximise the correction for
a single iteration. This can be achieved making Eq. 62 an equality and multiplying both sides by
∆t such that

∆tc = ∆tn

(
1 +

(
1
c

∫ ∫
IidνdΩ+ ϵiSc,i − aT 4

u

)
aT 4

u

)−1

(63)
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Iterative Multifrequency Corrected Implicit Monte Carlo

This represents an assumed �rst order relationship between the overheating and the time step size.
To prevent us from taking too large of a time step we set a max increase in the time step as
∆tmax = 1.5∆tn. Using this max change in time step size the �nal time step controller can be
de�ned as

∆tn+1 = min(∆tc,∆tmax) (64)

where ∆tc is the most restrictive time step for all cells.
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6 Three Temperature Physics

Currently the Jayenne library is natively two temperatures, only accounting for separate electron
and radiation temperature, assuming that ion and electrons are in equilibrium. Evans and Densmore
developed a three temperature operator split that mimics the two-temperature equations using a
linearization of the electron temperature [21]. In the following section we will present the standard
three temperature split that can be used the Jayenne IMC library.

6.1 The Evans and Densmore 3T split

The three-temperature (3T) radiation transport equations are commonly used in high energy density
physics applications such as inertial con�nement fusion. Evans and Densmore [21] demonstrated
how the ion temperature equation can be eliminated, via substitution, and folded into the Fleck
and Cummings [23] linearization. This creates a set of modi�ed "two-temperature like" equation
with a modi�ed linearization,

1

c

∂I

∂t
+Ω · ∇I + σI =

1

4π
f̃σacT 4

e,n +
1

4π

∫∫
(1− f̃)σIdνdΩ+ (1− f̃)Q+ + (1− f̃)Qe, (65)

c̃v,e
∂Te
∂t

=

∫∫
σIdνdΩ− f̃σacT 4

e,n + 4πf̃Q+ + 4πf̃Qe + 4πQ−, (66)

cv,i
∂T

∂t
= Qi − 4πQ̃, (67)

f̃ =
1

1 + β̃σc∆t
(68)

β̃ =
4aT 3

e,n

c̃v,e
, (69)

c̃v,e = cv,e + ω̃∆t (70)

ω̃ =
cv,iω

cv,i + ω∆t
, (71)

Q̃ =
1

4π
ω̃(Ti,n − Te,n) (72)

Q+ =
1

2
(Q̃+ |Q̃|), (73)

Q− =
1

2
(Q̃− |Q̃|). (74)

Note the addition of the positive and negative source terms (Q+ andQ−) are added to account for the
possibility of a negative electron ion coupling source ((̃Q) < 0). This is used because the linearization
bring the electron ion coupling into the radiation equation and a negative source would produce
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Three Temperature Physics

negative weighted particles. Negative weighted Monte Carlo particles can signi�cantly increase the
variance in calculations and can eventually create negative temperatures. This additional positive
and negative source terms are not used in deterministic methods that can treat negative radiation
source directly.
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7 Physical Scattering

The original Fleck and Cummings derivation of the IMC equations neglects physical scattering ,
focusing instead on the regime where absorption-emission is dominant. As a result, most physical
scattering processes are simply applied to the IMC equations independent of the original Fleck and
Cummings linearization. The Jayenne package o�ers several options for physical scattering, but
only one may be selected for any simulation. Thus, the impetus is on the user to decide which
physical scattering option is appropriate for their temperature/frequency regime.

7.1 Isotropic Coherent (“Thomson-esque”) Scattering

The simplest option for physical scattering in Jayenne is the straightforward addition of isotropic
coherent scattering, a scattering process which does not change the frequency of the particle. The
outgoing photon direction is chosen isotropically, as the name suggests. This option is somewhat
analogous to Thomson scattering (a coherent process), but does not accurately treat the non-
isotropic Thomson angular distribution.

Thomson scattering occurs when very low-energy photons scatter o� of free electrons. It is the
low-frequency limit of Compton scattering. No energy is exchanged between radiation and matter
in Thomson interactions; the only quantity that changes is the outgoing direction of the photon.
As previously mentioned, the coherent scattering option in Jayenne does not produce the correct
angular distribution for Thomson scatters, instead using an isotropic outgoing angular distribution.

7.2 Compton Scattering

Compton scattering involves the incoherent scattering of photons o� of free electrons, and can
dominate radiation-matter coupling when the material temperature is hotter than ∼ O(1 keV).
Because photons are bosons, the Compton scattering process is subject to stimulated e�ects. In
essence, the probability of a photon Compton-scattering from some initial state to some �nal state
is enhanced by the population of photons at the �nal state. When stimulated e�ects are included,
the in-scattering term of the TRT radiation equation takes the form:∫ ∞

0
dν ′
∫
4π
dΩ′ ν

ν ′
σs(ν

′ → ν,Ω′ · Ω)I(ν ′,Ω′)[1 + c2I(ν,Ω)/2hν3]

The bracketed term in red represents the stimulated contribution to the in-scattering term. From
a Monte Carlo perspective, accurate treatment of the stimulated Compton e�ect is exceedingly
di�cult, as it requires estimation of the full time- and frequency-dependent photon spectrum before
each scattering event. To avoid this complication, we neglect the stimulated term in all

Jayenne Compton implementations. While this greatly simpli�es numerical treatment of the
Compton process, it also modi�es the equilibrium photon distribution from a Planck distribution
to a Wien. Simulations with both absorption-emission and Compton scattering will equilibrate to
a distribution that is neither purely Planckian nor purely Wien, but some superposition of the two.
Improved treatments for stimulated emission are an active area of research.

Even with the simplifying assumption of no stimulated emission, the Compton kernel is by it-
self a complicated function of temperature, frequency, and angle. When treated probabilistically,
it is very di�cult to sample the detailed phase space of the scattering kernel adequately. When
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Physical Scattering

treated deterministically (e.g. numerically integrated to form scattering matrices or simpli�ed en-
ergy exchange terms), issues arise with under�ow / over�ow errors and other numerical sensitivities.
Methods representing both approaches are implemented in Jayenne.

In the following subsubsections, we describe the primary Compton treatments available in the
Jayenne package � the Bowers-Wilson method, explicit Compton, linearized Compton, and the
average energy exchange. Some of these treatments may be combined in a single simulation.

7.2.1 The Bowers-Wilson correction

The Bowers-Wilson (BW) correction [1] is the most robust and, conversely, least accurate method
available for simulating e�ects of Compton scattering. The BW correction does not capture any
of the spectral e�ects of Compton; it only approximates the bulk material heating (or cooling)
rate from Compton scattering. In addition, the BW correction was derived for a gray (frequency-
independent) system, but is often applied to multigroup systems in an ad hoc fashion. We omit the
full derivation of the BW correction here for brevity, but note that the correction term is applied
to the groupwise absorption opacity, and takes the form:

κC =
4σTneckaT

4
R

mec2
1

T 3 + T 2TR + TT 2
R + T 3

R

, (75)

where T is the material temperature, TR the radiation temperature, ne the electron density, (mec
2)

the electron rest mass, and k and a the Boltzmann and radiation constants, respectively. A more
complete description and derivation can be found in Chapter 7 of [1]. We expect the BW correction
to be accurate in near-equilibrium conditions, when the radiation spectrum is nearly Planckian.
Even in these conditions, the BW correction will only estimate the bulk rate of energy transfer, and
will not capture Compton e�ects in the radiation spectrum.

7.2.2 Explicit Compton

The explicit Compton methodology in Jayenne is an analog representation of Compton scattering
in the absence of induced e�ects. While the total groupwise Compton scattering rate is provided via
an opacity library, the speci�cs of the scattering event (colliding electron speed and angle, outgoing
photon frequency, direction, and angle) are sampled from governing distribution functions for the
physical process. The rejection sampling procedure used to accomplish this is expensive, but the
resulting photon distributions are accurate. Unfortunately, the high dimensional Compton phase
space must be adequately sampled to ensure a reasonable estimate of the total energy transfer
between radiation and matter. In some cases, this requires tens of thousands of scattering events
per cell, per timestep.

In addition, the explicit-in-time evaluation of the total scattering rate can lead to onerous
timestep restrictions in problems where Compton is dominant and the energy exchange timescale
is very short.

The explicit Compton procedure involves the following steps:

1. Sample an appropriate electron from a relativistic Maxwellian distribution at the material
temperature, T . This involves sampling an electron speed and an angle (relative to the
incoming photon) [3].
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Physical Scattering

2. Boost the photon into the electron rest frame

3. Using the Klein-Nishina formula for Compton scattering o� of a free electron, sample the
outgoing photon frequency ν ′ and direction Ω′ in the electron rest frame

4. Un-boost the photon back to the lab frame

5. Deposit the di�erence between the photon's initial and �nal energy-weight, N(ν ′ − ν), to the
material

7.2.3 Average energy exchange

The average energy exchange technique replaces the (noisy) explicit Compton energy exchange with
an average value (integrated over all possible outgoing frequencies). For consistency, the scattering
opacity is set to a numerically-consistent value when the average treatment is enabled.

This implementation uses Compton opacities and relative energy exchange data from the CSK
project [36]. The CSK project calculates the Compton opacity using:

σc(ν, T ) =

∫ ∞

0

∫
4π
σc(ν → ν ′,Ω · Ω′, T )dΩ′dν , (76)

where σc(ν → ν ′,Ω · Ω′, T ) is the Compton scattering kernel [32]. The expected relative energy
change for a photon with frequency ν scattering in a material with temperature T is then calculated
using:

⟨ν ′ − ν⟩
ν

=

∫∞
0

(
ν′

ν − 1
) ∫

4π σc(ν → ν ′,Ω · Ω′, T )dΩ′dν ′

σc(ν, T )
(77)

The average energy exchange methodology can be enabled with both the explicit Compton treatment
and the linearized Compton treatment.
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8 Radiation Hydrodynamics

As carriers of electromagnetic force, photons impart momentum to matter via interaction with
charged particles (e.g. free electrons or electrons bound to an atomic orbital). The cumulative
e�ect of photon-matter interactions on the energy and momentum of a �uid is a topic of radiation
hydrodynamics. More generally, radiation hydrodynamics is the study of the interaction between
particles with dynamics that can be described with a transport or di�usion equation (radiation) with
particles that behave hydrodyamically (�uid/material). The origin of both the transport equation
and hydrodynamics equations is the Boltzmann equation,

dψ

ds
=
∂ψ

∂t
+ v⃗ · ∇ψ + a⃗ · ∇vψ = C[ψ] +

q

4π
,

where ψ is a particle distribution, s is the characteristic particle path (in units of time) over inde-
pendent variables (sometimes referred to as an a�ne parameter), t is time, v⃗ is velocity, ∇ is the
gradient operator, a⃗ is acceleration from external (long-distance) forces, ∇v is the gradient operator
in velocity space, and C is a functional of the distribution that describes scattering. The photon
transport equation is straightforward to derive from the Boltzmann equation: v⃗ = cΩ̂ (speed of
light times the unit direction), a⃗ = 0 (photons travel at c in all reference frames), and

C[ψ] = c

∫
4π

∫ ∞

0
R(ν ′ → ν, Ω̂′ → Ω̂)ψ′dν ′dΩ′ − cσtψ ,

where ν is frequency, R is the redistribution or scattering kernel, and σt = σa + σs is the total
opacity. The substitutions give

1

c

∂ψ

∂t
+ Ω̂ · ∇ψ =

∫
4π

∫ ∞

0
R(ν ′ → ν, Ω̂′ → Ω̂)ψ′dν ′dΩ′ − σtψ +

q

4π
.

The linear form of the collision functional (a convolution minus a simple multiplication) sets the
asymptotic particle behavior to be described by a di�usion equation. A di�usion equation can
readily be obtained by introducing a scaling parameter, ϵ, (see, e.g., [28])

c→ c

ϵ
,

σt →
σt
ϵ

,

σa → ϵσa ,

q → ϵq ,

expanding ψ in terms of ϵ,

ψ =

∞∑
k=0

ψ(k)ϵk ,

assuming frequency independent, isotropic scattering, and matching terms by orders in ϵ,

ψ(0) =
ϕ(0)

4π
,

ψ(1) =
ϕ(1)

4π
− 1

4πσt
Ω̂ · ∇ϕ(0) ,

1

c

∂ψ(0)

∂t
+ Ω̂ · ∇ψ(1) + σsψ

(2) + σaψ
(0) =

σs
4π
ϕ(2) +

q

4π
.
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Radiation Hydrodynamics

Integrating the second equation multiplying by Ω̂ over Ω, integrating the third equation over Ω,
and solving the equations for ϕ(0) gives the di�usion equation,

1

c

∂ϕ(0)

∂t
−∇ ·

(
1

3σt
∇ϕ(0)

)
+ σaϕ

(0) = q .

Alternatively, for massive particles that interact by two-body collisions [27, 14],

C[ψ] =

∫
d3v⃗∗

∫
4π
dΩsR(v⃗ ↔ v⃗′, v⃗∗ ↔ v⃗′∗, Ω̂s)(ψ

′
∗ψ

′ − ψ∗ψ) ,

where v⃗∗ is the velocity of the a particle that will collide with the particle moving at v⃗, ψ∗ is
the distribution evaluated at v⃗∗, Ω̂s is a unit vector that transforms pre- to post-collision velocity,
and the ′ denotes post-collision (or evaluation at post-collision velocities) [27]. This collision kernel
poses unique challenges to solve for many-particle systems. For instance, in Monte Carlo, a particle's
proximity to other particle's must be tracked in order to calculate collision interactions [41].

Neglecting external forces (long-distance interactions), and external sources, and incorporating
the two-body collision kernel, the Boltzmann equation becomes,

∂ψ

∂t
+ v⃗ · ∇ψ =

∫
d3v⃗∗

∫
4π
dΩsR(v⃗ ↔ v⃗′, v⃗∗ ↔ v⃗′∗, Ω̂s)(ψ

′
∗ψ

′ − ψ∗ψ) .

The scaling parameter is now the ratio of the mean free path for two-body collisions to the problem
length. For the above equation, scaling

R→ R

ϵ

and expanding ψ(∗) and ψ
′
(∗) in ϵ, the leading-order equations are

0 =

∫
d3v⃗∗

∫
4π
dΩsR(v⃗ ↔ v⃗′, v⃗∗ ↔ v⃗′∗, Ω̂s)(ψ

′(0)
∗ ψ′(0) − ψ

(0)
∗ ψ(0)) ,

∂ψ(0)

∂t
+ v⃗ · ∇ψ(0) =

∫
d3v⃗∗

∫
4π
dΩsR(v⃗ ↔ v⃗′, v⃗∗ ↔ v⃗′∗, Ω̂s)(ψ

′(0)
∗ ψ′(1) + ψ′(0)ψ

′(1)
∗ − ψ

(0)
∗ ψ(1) − ψ(0)ψ

(1)
∗ ) .

These equations are essentially the �rst two in the Chapman-Enskog hierarchy [26, 6]. The �rst
equation implies a su�cient (not necessary) solution [14],

ln(ψ
′(0)
∗ ) + ln(ψ′(0)) = ln(ψ

(0)
∗ ) + ln(ψ(0)) .

This equation is a statment of pre- to post-collision conservation, and can be constructed from a
linear sum of the particle conservation laws for mass, momentum, and kinentic energy, [14],

2αm+ β⃗ ·m(v⃗′∗ + v⃗′) + γ
1

2
m(v′2∗ + v′2) = 2αm+ β⃗ ·m(v⃗∗ + v⃗) + γ

1

2
m(v2∗ + v2) ,

which holds for elastic collisions, for any constants α, β⃗, and γ. The above two equations imply a
Maxwellian/Gaussian distribution for the solution,

ψ(0) ∼ em(α+β⃗·v⃗+γv2/2) .
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Radiation Hydrodynamics

After properly normalizing ψ(0), the solution for ψ(1) can be obtained from the ψ(1) equation,
following the detailed derivation given by, for instance, [14]. The Chapman-Enskog restriction on
α, β⃗, and γ [6] forces ψ = ψ(0) and ψ(1) = 0 in equilibrium. Consequently, setting

ρ = m

∫
ψd3v⃗ ,

ρU⃗ = m

∫
v⃗ψd3v⃗ ,

(P)i,j = m

∫
(v⃗i − U⃗i)(v⃗j − U⃗j)ψd

3v⃗ ,

ρe =
1

2
m

∫
|v⃗ − U⃗ |2ψd3v⃗ ,

Q⃗ =
1

2
m

∫
(v⃗ − U⃗)|v⃗ − U⃗ |2ψd3v⃗ ,

multiplying the Boltzmann equation by m, mv⃗, and m|v⃗|2/2, and integrating over velocity space,

∂ρ

∂t
+∇ · (ρU⃗) = 0 ,

∂(ρU⃗)

∂t
+∇ ·

(
P+ ρU⃗U⃗

)
= 0 ,

∂

∂t

(
ρe+

1

2
ρU2

)
+∇ ·

(
Q⃗+ U⃗ρe+ U⃗ρ

U2

2
+P · U⃗

)
= 0 .

These are the hydrodynamic (Euler) equations without external sources (i.e. no long-distance forces,
which would manifest from integrating the a⃗ · ∇v term). The above equations require a closure
relationship; if one is supplied, then the above equations can be solved for ρ, U⃗ , and e to obtain a
macroscopic description of the hydrodynamic state.

To summarize, the origin of the hydrodynamics/�uid equations or the transport/radiation equa-
tion is the Boltzmann equation with a quadratic or linear collision functional, respectively.

� For radiation, the linearity of the scattering kernel causes the asymptotic (short mean free
path) behavior to be described by a di�usion equation.

� For the �uid, the quadratic scattering kernal, along with the Chapman-Enskog equilibrium
restriction, causes the asymptotic (short two-body mean free path) behavior to be described
by the hydrodynamics equations.

� The di�erence in the scattering kernel implies di�erent algorithmic requirements, but the
asyptotic limit of either version of the Boltzmann equation permits optimization of the solution
procedure in high-scattering regions (e.g. DDMC).

The opacities, which mediate the interaction of radiation with a material, must set the degree
to which massive particles are accelerated, and hence must manifest as source terms in the Euler
equations. Equivalently, these terms introduce emissivity (a source) into the transport equation.
The resulting system of equations is nonlinear, even when the material is static. The following
sections describe how the Jayenne library's IMC solution is coupled to the hydrodynamic solution
from a host code.
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Radiation Hydrodynamics

8.1 The radiation hydrodynamics equations

In conservative form, the inviscid Euler equations are

∂ρ

∂t
+∇ · (ρU⃗) = 0 ,

∂(ρU⃗)

∂t
+∇ ·

(
ρU⃗U⃗

)
+∇P =

1

c
q⃗ ,

∂(ρE)

∂t
+∇ ·

(
U⃗(ρE+ P )

)
= q0 +

U⃗

c
· q⃗ ,

where q⃗ and q0 are the external source terms, and E = e + U2/2. Di�ering from the previous
section, the heat conduction �ux term Q⃗ has been dropped, and the pressure tensure has been
assumed to have no shear terms, so P = P I, where I is the identity tensor. Using the Lagrangian
time derivative,

D

Dt
=

∂

∂t
+ U⃗ · ∇ ,

the above equations can be cast in the Lagrangian form,

Dρ

Dt
+ ρ∇ · U⃗ = 0 ,

ρ
DU⃗

Dt
+∇P =

1

c
q⃗ ,

ρ
De

Dt
+ P∇ · U⃗ = q0 .

The second equation can be derived by utilizing the Product Rule on the derivatives in the momentum-
conservation equation and eliminating terms that form the mass-conservation equation. Likewise,
the third equation can be obtained by the Product Rule and eliminating terms that form the mass-
conservation equation (multiplying e and U = |U⃗ |) and substituting q⃗/c for the terms dotting U⃗
that form the left side of the momentum-conservation equation. It is worth noting that the change
from q0+ U⃗ · q⃗/c to q0 in the transformation of the energy-conservation equation is not of relativistic
origin, despite its appearance; q0 and q⃗ are de�ned in one inertial, or �lab�, frame.

Assuming the equation of state is known for the material (for instance, the gamma-law P ∼ ρe),
more information is needed for q0 and q⃗ to close the system of equations. If q0 and q⃗ are sources
due to a radiation �eld, then the additional information is the transport equation, which in local
thermodynamic equilibrium is

1

c

∂I

∂t
+ Ω̂ · ∇I =

∫
4π

∫ ∞

0

ν

ν ′
R(ν ′ → ν, Ω̂′ → Ω̂)I ′dν ′dΩ′ − (σs + σa)I + σaB ,

where B is the Planck function transformed into the lab frame, and I = νψ. The only di�erence
with the previous section is that q/4π has been replaced with σaB. Having been integrated over the
space of all single-particle velocities, the Euler equations are lower-dimensional than the transport
equation. This suggests that equivalently, integrals of the transport equation have to be taken over
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Radiation Hydrodynamics

frequency and direction, to couple with hydrodynamics,

∂E

∂t
+∇ · F⃗ = q̃0 ,

∂F⃗

∂t
+ c∇ · P = ˜⃗q ,

where

E =
1

c

∫
4π

∫ ∞

0
IdνdΩ ,

F⃗ =

∫
4π

∫ ∞

0
Ω̂IdνdΩ ,

P =
1

c

∫
4π

∫ ∞

0
Ω̂Ω̂IdνdΩ ,

and q̃0 and ˜⃗q follow from the transport equation. Assuming the total available momentum and
energy is in either the �uid or the radiation �eld,

q̃0 = −q0 ,

˜⃗q = −q⃗ .

In Monte Carlo, the energy and momentum absorbed into the material from the radiation can be
tallied, which in turn permits calculation of q0 and q⃗.

The Jayenne library assumes the radiation transport will be operator-split from the hydrody-
namics: during the Monte Carlo phase, the state of the material will be a snapshot. The simplest
operator split is as follows:

1. solve the Euler equations without sources,

2. with the updated hydrodynamic state, solve the radiation transport equations, accounting for
(sub-)relativistic e�ects of photons changing reference frames between �uid parcels,

3. with energy and momentum deposition tallies, calculate sources and update the hydrodynamic
state again.

The question remains as to how to treat relativistic corrections. In Monte Carlo, Lorentz trans-
formations to energy, frequency, and direction can be performed for each particle to boost into and
out of the comoving frame of the �uid (see, e.g. [14, 4]),

Ep = E(0)
p γ

(
1 +

U⃗

c
· Ω̂(0)

p

)
,

Ω̂p =
Ω̂
(0)
p + γU⃗/c+ (γ − 1)Ω̂

(0)
p U⃗ U⃗/U2

γ(1 + U⃗ · Ω̂(0)
p /c)

,

νp = ν(0)p γ

(
1 +

U⃗

c
· Ω̂(0)

p

)
,
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Radiation Hydrodynamics

where subscript (0) denotes the comoving frame here, Ep is particle energy weight, and here γ =
1/
√

1− U2/c2. In the comoving frame, it is often simpler to treat scattering and absorption (where
the material can be treated as though it isn't moving after the particle's Lorentz transformation).
Alternatively, when the �uid motion is sub-relativistic, or U/c ≪ 1 everywhere, it's possible to
post-process the radiation and �uid �elds after a transport step that threats the �uid as though
it is a frozen snapshot in time [38, 46]. In the next section, the sub-relativistic material motion
corrections, as they are implemented in the Jayenne library, are discussed.

8.2 Material Motion Corrections

The material motion corrections in the Jayenne library can be seen as an approximate comoving
formulation that preserves lab-frame energy and momentum conservation [38]. As particles stream
through a �uid, their frequency and direction change between the reference frames of the �uid
parcels they pass, according to the Lorentz transformations written in the previous section. This
implies that the expansion of the Lorentz-invariant intensity, I/ν3 [14, 5], from the characteristic
includes more terms (see beginning of this chapter),

(ν(0))3
d

ds

(
I(0)

(ν(0))3

)
=
∂I(0)

∂t

dt

ds
+
dr⃗

ds
· ∇I(0) +

(
∂I(0)

∂ν(0)
− 3

I(0)

ν(0)

)
dν(0)

ds
+
dΩ̂(0)

ds
· ∂I

(0)

∂Ω̂(0)
,

where (0) superscripts imply the comoving, or �uid, frame. the method of characteristics applies in
the usual way to the time and space derivatives (which are in the lab frame). For the third term,
the Doppler shift formula from the previous section may be used; to O(U⃗/c),

∆ν(0) = −ν
(0)

c
∆U⃗ ·

(
Ω̂(0) +

U⃗

c

)
,

where use has been made of the O(U/c) Lorentz transform from the lab frame to the comoving
frame, and νΩ̂ ≈ ν(0)(Ω̂(0) + U⃗/c). Dividing by ∆s → 0, using the Chain Rule, dU⃗/ds = ∇U⃗ · Ω⃗,
and keeping only O(U/c) terms,

dν(0)

ds
= −ν

(0)

c
Ω̂(0) · ∇U⃗ · Ω̂(0) .

Following the same procedure for dΩ̂/ds,

∆Ω̂(0) = −∆U⃗

c
·
(
I− Ω̂Ω̂

)
,

and, since U⃗ · Ω̂Ω̂/c ≈ U⃗ · Ω̂(0)Ω̂(0)/c,

dΩ̂(0)

ds
= − Ω̂(0) · ∇U⃗

c
·
(
I− Ω̂(0)Ω̂(0)

)
.
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Radiation Hydrodynamics

Streaming is balanced by comoving absorption and emission, j(0) − σ
(0)
t I(0). Thus, to O(U/c), the

comoving transport equation is

1

c

DI(0)

Dt
+

(
1− Ω̂(0) U⃗

c

)
Ω̂(0) · ∇I(0) − ν(0)

c
Ω̂(0) · ∇U⃗ · Ω̂(0) ∂I

(0)

∂ν(0)
+

3

c
Ω̂(0) · ∇U⃗ · Ω̂(0)I(0)

− Ω̂(0) · ∇U⃗
c

·
(
I− Ω̂(0)Ω̂(0)

) ∂I(0)
∂Ω̂(0)

= j(0) − σ
(0)
t I(0) .

This is the comoving transport equation given by [5]. Integrating this in comoving frequency and
direction, the �rst two moment equations are (dropping some terms found unimportant by [5]),

DE(0)

Dt
+∇ · F⃗ (0) + 4∇U⃗ : P(0) = −q(0)0 ,

DF⃗ (0)

Dt
+ c∇ · P(0) + 4∇U⃗ : Q(0) = −q⃗(0) ,

where V : W is the trace of the matrix product VWT , and Q is the radiative �ux tensor (analogous
to the heat �ux vector for matter, derived at the beginning of the chapter). The factor of 4 in the
third terms on the left side arises from using integration by parts when integrating over frequency.
Assuming the Lagrangian time derivative of the comoving �ux and the high-order heat �ux tensor
are negligible, and assuming isotropric in the comoving frame, the above equations become

∂E(0)

∂t
+∇ ·

(
4

3
U⃗E(0)

)
+∇ · F⃗ (0) = −q(0)0 +

U⃗

c
· c∇E

(0)

3
,

c

3
∇E(0) = −q⃗(0) .

It is straightforward to show that (q0, q⃗) is a four-vector that obeys Lorentz transformation [4], so
to O(U/c) incorporating the second equation into the �rst and dropping (0) superscripts gives

∂E

∂t
+∇ ·

(
4

3
U⃗E

)
+∇ · F⃗ = −

(
q0 +

U⃗

c
· q⃗

)
.

At the sub-relativistic limit, U/c ≪ 1, the distinction between lab and comoving frame values of
E and F⃗ vanish, so the frame superscripts can be dropped. This equation has been arrived at
asymptotically as well [37, 40, 38] (as apposed to truncating harmonic moments in Ω̂(0)). This
equation has two additional terms, compared to the original lab-frame zeroth-moment equation
given in the previous section. In the Jayenne library, the form of the transport equation preserves
this integral moment,

1

c

∂I

∂t
+∇·

(
4

3

U⃗

c
I

)
+Ω̂ ·∇I =

∫
4π

∫ ∞

0

ν

ν ′
R(ν ′ → ν, Ω̂′ → Ω̂)I ′dν ′dΩ′− (σs+σa)I+σaB− U⃗

c
· q⃗
4π

,

which is essentially the form given by [47], the static-material transport equation with two additional
terms. It turns out that leading-order angular/directional moments of the above equation preserve
global energy and momentum conservation, when coupled with the Euler equations (the coupling

Jayenne Physics Manual Revision 1.0
Los Alamos National Laboratory Page 8-7
Jayenne Physics Manual Revision 1.0
Los Alamos National Laboratory Page 8-7
Jayenne Physics Manual Revision 1.0
Los Alamos National Laboratory Page 8-7



Radiation Hydrodynamics

term merely has a work contribution but it still cancels with the conservative energy equation,
and there are new 4U⃗/3 advection terms). These modest additions to the static-material radiation
transport equation permit a straightforward operator split with the hydrodynamic equations.

Here the outline of the operator split from the previous section is expanded upon to provide
details for the sub-relativistic material motion corrections (see, e.g. [38, 47]).

1. Have the host code solve an uncoupled hydrodynamic step,

ρn+1 − ρn
∆tn

+ [∇ · (ρU⃗)]∗ = 0 ,

ρn+1U⃗h − ρnU⃗n

∆tn
+ [∇ · (ρU⃗U⃗) +∇P ]∗ = 0 ,

ρn+1Eh − ρnEn

∆tn
+ [∇ ·

(
U⃗(ρE+ P )

)
]∗ = 0 ,

where the subscript n is the time step index, h denotes the value at the end of the pure
hydrodynamic step, and ∗ denotes an arbitrary time-centering evaluation.

2. The next step is to solve radiation transport using the updated hydrodynamic state. The
material-motion correction approach adopted by the Jayenne package is discussed in the next
section. For clarity, they are written here,

Ih − In
∆tn

+∇ ·
(
4

3
U⃗hIn

)
= 0 ,

Ir − Ih
c∆tn

+ Ω̂ · ∇I∗ =
∫
4π

∫ ∞

0

ν

ν ′
R(ν ′ → ν, Ω̂′ → Ω̂)I ′∗dν

′dΩ′ − (σs,h + σa,h)I∗ (92a)

+(1− fh)
σa,hbh
4πσP,h

∫
4π

∫ ∞

0
σa,hI

′
∗dΩ

′dν ′ + fhσa,hbh
acT 4

h

4π
,

In+1 − Ir
∆tn

= −
[
U⃗ · q⃗

4π

]
∗
,

where subscript r denotes the end of the Monte Carlo step, fh is the Fleck factor, σP,h is the
Planck opacity, and bh is the normalized Planck function [23]. Algorithmically,

(a) the �rst equation corresponds to advecting the initial census particles by 4U⃗h/3,

(b) the second equation involves the standard IMC method,

(c) and the third equation involves post-processing the particles by scaling their energy
weights, to account for work done by the radiation to the �uid.

3. Update the hydrodynamic state again, using the Monte Carlo tallies of energy and momentum
deposition from the previous step,

ρn+1
U⃗n+1 − U⃗h

∆tn
=

[
q⃗

c

]
∗
,

ρn+1
en+1 − eh

∆tn
= fh[q0]a,∗ + [q0]s,∗ ,

ρn+1
U2
n+1/2− U2

h/2

∆tn
=

[
U⃗

c
· q⃗

]
∗

,
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Radiation Hydrodynamics

where [q0]a,∗ is the internal energy coupling due to absorption included in the IMC linearization

and [q0]s,∗ is the inelastic scattering coupling excluded from the IMC linearization. U⃗∗ is
obtained by requiring consistency between the �rst and third equation, so

U⃗∗ =
U⃗n+1 + U⃗h

2
.

Since this part involves updating the �uid variables, it must be done by the host code.

In the following section, we discuss the remaining piece needed to solve the radiation hydrody-
namics equations with the Jayenne library: energy and momentum tallies. These tallies permit the
calculation of q0 and q⃗ needed in the above operator split outline.

8.3 Momentum Deposition

In the Jayenne package, both energy and momentum deposition are tallied via implicit capture (see,
e.g. [35]). For absorption, the tally formulae follow from

∆I = I0

∫ d

0
σae

−σasds ,

∆(Ω̂I) = I0

∫ d

0
Ω̂σae

−σasds ,

where I is the �nal intensity after streaming distance d and I0 is the initial intensity. In Cartesian
coordinates the direction Ω̂ will be constant along path, but in curvilinear coordinates (e.g. cylin-
drical or spherical) the direction will change along the path. Since the intensity of a particle is
merely a product of Dirac-delta functions multiplied by the energy weight, the above formulae are
quivalent to

∆Ep = Ep,0

∫ d

0
σae

−σasds ,

1

c
∆(Ω̂pEp) = ∆Pp =

1

c
Ep,0

∫ d

0
Ω̂σae

−σasds .

The above formulae, together with instantaneous changes in energy and momentum from scattering
(e�ective or physical),

∆Ep = Ep − Ep,0 ,

1

c
∆(Ω̂pEp) = ∆Pp =

1

c
(EpΩ̂p − Ep,0Ω̂p,0) ,

give a history of values for each particle that are summed in each spatial cell, over particles that
cross or scatter in the cell.

In curvilinear coordinates, the momentum absorption implicit capture has to be done numerically
along particle paths, described by [13]. For cylindrical geometry, if the radially-projected path is
short with respect to the initial radius and the projected optical depth is small over the path, or [13]

σa(1− ξ2p)d
2

σa(1− ξ2p)d
2 + rp,0

< ϵt ,
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where ξ is the axial (z-axis) projection of the particle direction and ϵt is some acceptable tolerance
level, the integral can be approximated as [13]

∆Pp =
1

c
Ep,0Ω̂∗

∫ d

0
σae

−σasds ,

where Ω̂∗ is an average direction of the path. This is now an analytic integral. Otherwise, the full
numerical integral is performed with the Midpoint Rule on up to twelve integration points on the
path, with seven of the points resulting from an equipartition of the energy attenuation,

∆ε =
∆Ep

6Ep,0
=

1− e−σad

6
,

sk = − ln(1− k∆ε)

σa
, (97a)

where sk are a subset of points along the integration path. If the particle is travelling inward in
radius, it may have an �in�ection point�, where the radial projection of the direction goes from neg-
ative to positive (the particle travels outward again). In this instance, an additional �ve integration
points are added: the in�ection point and two points geometrically spaced on either side of the
in�ection point in the path,

s̃0 = −µp,0rp,0
1− ξ2p

= µ̃p,0rp,0 ,

s̃±j = s̃0 ±

(
dµ̃

ds

∣∣∣∣
s0

)−j

.

The set of s̃j points are then added to the sk set.

It is noteworthy that going to fully special relativistic transport would complicate the numerical
integral of the momentum deposition further. For instance, tracking particles in the lab frame would
require an angularly anisotropic opacity, since the Lorentz-invariant form of the opacity is actually
νσa [5]. The Jayenne library currently only supports sub-relativistic (or, as it is called in the liter-
ature, non-relativistic) transport, so the lab and comoving frame opacities are not distinguishable.

The above discussion on momentum deposition only applies to pure transport, so a separate
treatment is needed for the di�usion optimization, DDMC [20, 19, 11]. The approach to tallying
momentum is discussed in the following subsubsection.

8.3.1 DDMC Momentum Deposition

DDMC particles do not possess direction or position at the sub-cell level [25, 20, 19, 11]. Conse-
quently, direction cannot be used in the tally of momentum for DDMC particles and an alternate
method must be applied. However, the momentum deposition is an integral over direction solid
angle, which in the di�usion limit can be estimated as at cell i, face j as [20]

Ai,j∆P⃗i,j = Ai,jσi,j
∑
p

F⃗p,i,j ,
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where σi,j is the opacity at face j evaluated in cell i, Ai,j is the area of face j, and F⃗p,i,j is the
contribution of particle p to the net �ux across face j. In interior DDMC cells,

ẑ ·
∑
p

F⃗p,i,j = ẑ · F⃗i,j = (n⃗i,j · ẑ)σj,i→i′cEiVi − (n⃗i,j · ẑ)σj,i′→icE
′
iV

′
i ,

where Vi is the volume of cell i. This is the expected net leakage to cell i′ across face j, along
dimension z. At an IMC-DDMC (hybrid) interfaces, one of the terms on the right side of the
previous equation is replaced with the di�usion-limit boundary condition [20],

ẑ ·
∑
p

F⃗p,i,j = ẑ · F⃗i,j = (n⃗i,j · ẑ)σj,i→i′cEiVi − (n⃗i,j · ẑ)
∫ 1

0
P (µ)µI ′dµ ,

where µ = |Ω̂ · n⃗i,j | = |Ω̂ · ẑ|. Transport particles from cell i′ that sample transmission into cell i
contribute the net �ux in cell i, in other words. The cell average net momentum in cell i is

∆P⃗i =
1

Ai

∑
j

Ai,j∆P⃗i,j ,

where Ai =
∑

j Ai,j is the surface area of cell i. This formula reduces to an arithmetic average in
planar/Cartesian coordinates.
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